1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
| import json import multiprocessing import os import torch from torch import nn from d2l import torch as d2l
d2l.DATA_HUB['bert.base'] = (d2l.DATA_URL + 'bert.base.torch.zip', '225d66f04cae318b841a13d32af3acc165f253ac') d2l.DATA_HUB['bert.small'] = (d2l.DATA_URL + 'bert.small.torch.zip', 'c72329e68a732bef0452e4b96a1c341c8910f81f')
def load_pretrained_model(pretrained_model, num_hiddens, ffn_num_hiddens, num_heads, num_blks, dropout, max_len, devices): data_dir = d2l.download_extract(pretrained_model) vocab = d2l.Vocab() vocab.idx_to_token = json.load(open(os.path.join(data_dir, 'vocab.json'))) vocab.token_to_idx = {token: idx for idx, token in enumerate( vocab.idx_to_token)} bert = d2l.BERTModel( len(vocab), num_hiddens, ffn_num_hiddens=ffn_num_hiddens, num_heads=4, num_blks=2, dropout=0.2, max_len=max_len) bert.load_state_dict(torch.load(os.path.join(data_dir, 'pretrained.params'))) return bert, vocab
devices = d2l.try_all_gpus() bert, vocab = load_pretrained_model( 'bert.small', num_hiddens=256, ffn_num_hiddens=512, num_heads=4, num_blks=2, dropout=0.1, max_len=512, devices=devices)
class SNLIBERTDataset(torch.utils.data.Dataset): def __init__(self, dataset, max_len, vocab=None): all_premise_hypothesis_tokens = [[ p_tokens, h_tokens] for p_tokens, h_tokens in zip( *[d2l.tokenize([s.lower() for s in sentences]) for sentences in dataset[:2]])]
self.labels = torch.tensor(dataset[2]) self.vocab = vocab self.max_len = max_len (self.all_token_ids, self.all_segments, self.valid_lens) = self._preprocess(all_premise_hypothesis_tokens) print('read ' + str(len(self.all_token_ids)) + ' examples')
def _preprocess(self, all_premise_hypothesis_tokens): pool = multiprocessing.Pool(4) out = pool.map(self._mp_worker, all_premise_hypothesis_tokens) all_token_ids = [ token_ids for token_ids, segments, valid_len in out] all_segments = [segments for token_ids, segments, valid_len in out] valid_lens = [valid_len for token_ids, segments, valid_len in out] return (torch.tensor(all_token_ids, dtype=torch.long), torch.tensor(all_segments, dtype=torch.long), torch.tensor(valid_lens))
def _mp_worker(self, premise_hypothesis_tokens): p_tokens, h_tokens = premise_hypothesis_tokens self._truncate_pair_of_tokens(p_tokens, h_tokens) tokens, segments = d2l.get_tokens_and_segments(p_tokens, h_tokens) token_ids = self.vocab[tokens] + [self.vocab['<pad>']] \ * (self.max_len - len(tokens)) segments = segments + [0] * (self.max_len - len(segments)) valid_len = len(tokens) return token_ids, segments, valid_len
def _truncate_pair_of_tokens(self, p_tokens, h_tokens): while len(p_tokens) + len(h_tokens) > self.max_len - 3: if len(p_tokens) > len(h_tokens): p_tokens.pop() else: h_tokens.pop()
def __getitem__(self, idx): return (self.all_token_ids[idx], self.all_segments[idx], self.valid_lens[idx]), self.labels[idx]
def __len__(self): return len(self.all_token_ids)
batch_size, max_len, num_workers = 512, 128, d2l.get_dataloader_workers() data_dir = d2l.download_extract('SNLI') train_set = SNLIBERTDataset(d2l.read_snli(data_dir, True), max_len, vocab) test_set = SNLIBERTDataset(d2l.read_snli(data_dir, False), max_len, vocab) train_iter = torch.utils.data.DataLoader(train_set, batch_size, shuffle=True, num_workers=num_workers) test_iter = torch.utils.data.DataLoader(test_set, batch_size, num_workers=num_workers)
class BERTClassifier(nn.Module): def __init__(self, bert): super(BERTClassifier, self).__init__() self.encoder = bert.encoder self.hidden = bert.hidden self.output = nn.LazyLinear(3)
def forward(self, inputs): tokens_X, segments_X, valid_lens_x = inputs encoded_X = self.encoder(tokens_X, segments_X, valid_lens_x) return self.output(self.hidden(encoded_X[:, 0, :])) net = BERTClassifier(bert)
lr, num_epochs = 1e-4, 5 trainer = torch.optim.Adam(net.parameters(), lr=lr) loss = nn.CrossEntropyLoss(reduction='none') net(next(iter(train_iter))[0])
import matplotlib.pyplot as plt
def train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs, devices=d2l.try_all_gpus()): """Train a model with multiple GPUs (defined in Chapter 13).""" timer, num_batches = d2l.Timer(), len(train_iter) animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0, 1], legend=['train loss', 'train acc', 'test acc']) net = nn.DataParallel(net, device_ids=devices).to(devices[0]) for epoch in range(num_epochs): metric = d2l.Accumulator(4) for i, (features, labels) in enumerate(train_iter): timer.start() l, acc = d2l.train_batch_ch13( net, features, labels, loss, trainer, devices) metric.add(l, acc, labels.shape[0], labels.numel()) timer.stop() if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1: animator.add(epoch + (i + 1) / num_batches, (metric[0] / metric[2], metric[1] / metric[3], None)) test_acc = d2l.evaluate_accuracy_gpu(net, test_iter) animator.add(epoch + 1, (None, None, test_acc)) plt.savefig('training_progress.png')
print(f'loss {metric[0] / metric[2]:.3f}, train acc ' f'{metric[1] / metric[3]:.3f}, test acc {test_acc:.3f}') print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec on ' f'{str(devices)}')
train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs, devices)
|